Protective effects of Lactobacillus plantarum CCFM8610 against chronic cadmium toxicity in mice indicate routes of protection besides intestinal sequestration.

نویسندگان

  • Qixiao Zhai
  • Gang Wang
  • Jianxin Zhao
  • Xiaoming Liu
  • Arjan Narbad
  • Yong Q Chen
  • Hao Zhang
  • Fengwei Tian
  • Wei Chen
چکیده

Our previous study confirmed the ability of Lactobacillus plantarum CCFM8610 to protect against acute cadmium (Cd) toxicity in mice. This study was designed to evaluate the protective effects of CCFM8610 against chronic Cd toxicity in mice and to gain insights into the protection mode of this strain. Experimental mice were divided into two groups and exposed to Cd for 8 weeks via drinking water or intraperitoneal injection. Both groups were further divided into four subgroups, control, Cd only, CCFM8610 only, and Cd plus CCFM8610. Levels of Cd were measured in the feces, liver, and kidneys, and alterations of several biomarkers of Cd toxicity were noted. The results showed that when Cd was introduced orally, cotreatment with Cd and CCFM8610 effectively decreased intestinal Cd absorption, reduced Cd accumulation in tissue, alleviated tissue oxidative stress, reversed hepatic and renal damage, and ameliorated the corresponding histopathological changes. When Cd was introduced intraperitoneally, administration of CCFM8610 did not have an impact on tissue Cd accumulation or reverse the activities of antioxidant enzymes. However, CCFM8610 still offered protection against oxidative stress and reversed the alterations of Cd toxicity biomarkers and tissue histopathology. These results suggest that CCFM8610 is effective against chronic cadmium toxicity in mice. Besides intestinal Cd sequestration, CCFM8610 treatment offers direct protection against Cd-induced oxidative stress. We also provide evidence that the latter is unlikely to be mediated via protection against Cd-induced alteration of antioxidant enzyme activities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The therapeutic protection of a living and dead Lactobacillus strain against aluminum-induced brain and liver injuries in C57BL/6 mice

Our previous study found that Lactobacillus plantarum CCFM639 had the ability to alleviate acute aluminum (Al) toxicity when the strain was introduced simultaneously with Al exposure. This research was designed to elucidate the therapeutic effects of living and dead L. plantarum CCFM639 against chronic Al toxicity and to gain insight into the protection modes of this strain. Animals were assign...

متن کامل

Potential of Lactobacillus plantarum CCFM639 in Protecting against Aluminum Toxicity Mediated by Intestinal Barrier Function and Oxidative Stress

Aluminum (Al) is a ubiquitous metal that can seriously harm the health of animals and humans. In our previous study, we demonstrated that Lactobacillus plantarum CCFM639 can decrease Al burden in the tissues of mice by inhibiting intestinal Al absorption. The main aim of the present research was to investigate whether the protection by the strain is also associated with enhancement of the intes...

متن کامل

Protective efficacy of Streptococcus thermophilus against acute cadmium toxicity in mice

Cadmium (Cd) is a highly toxic heavy metal, wide occupational and an environmental pollutant, affecting human health. Probiotics especially lactic acid bacteria (LAB) have the capacity to bind, remove and to decrease tissue cadmium levels. The objective was to evaluate the potency of Cd binding capacity, antioxidative properties of probiotic bacteria against cadmium in vitro and its probable de...

متن کامل

Protective efficacy of Streptococcus thermophilus against acute cadmium toxicity in mice

Cadmium (Cd) is a highly toxic heavy metal, wide occupational and an environmental pollutant, affecting human health. Probiotics especially lactic acid bacteria (LAB) have the capacity to bind, remove and to decrease tissue cadmium levels. The objective was to evaluate the potency of Cd binding capacity, antioxidative properties of probiotic bacteria against cadmium in vitro and its probable de...

متن کامل

Knockout of MIMP protein in lactobacillus plantarum lost its regulation of intestinal permeability on NCM460 epithelial cells through the zonulin pathway

BACKGROUND Previous studies indicated that the micro integral membrane protein located within the media place of the integral membrane protein of Lactobacillus plantarum CGMCC 1258 had protective effects against the intestinal epithelial injury. In our study, we mean to establish micro integral membrane protein -knockout Lactobacillus plantarum (LPKM) to investigate the change of its protective...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 80 13  شماره 

صفحات  -

تاریخ انتشار 2014